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Synopsis 

An attempt was made to numerically compute the temperature profile within the melt spin- 
ning filament without assuming axisymmetry and using the data on the variation of the coeffi- 
cient of heat transfer from a cylinder cooled by cross flow of air as given by E ~ k e r t . ~  The com- 
puted constant-temperature contours were approximately concentric circles with their center 
shifted from the filament center in the downstream direction of the cooling air flow. A filament 
yarn melt spun under spinning conditions corresponding to the computation was dyed, and its 
cross sections were observed under the microscope. The border between the dyed and undyed 
portion of the cross sections approximately coincided with oce of the computed temperature con- 
tours, suggesting indirectly the general validity of the computed temperature profile. 

INTRODUCTION 

Andrewsl analyzed the temperature profile within the melt spinning fila- 
ment assuming that the radius profile R ( x )  is given and the temperature pro- 
file is axisymmetrical. However, no analytical study that appeared in the lit- 
erature treats the temperature profile without assuming the axisymmetry, ex- 
cept one paper2 by the present authors. 

Since in most industrial melt spinning operations cooling air is blown at  
right angles to the filaments, one might predict the existance of a nonaxisym- 
metrical temperature profile across the filament. In fact, the fiber produc- 
tion industry sometimes takes advantage of such nonaxisymmetrical cooling 
in melt spinning to impart latent crimps on the melt spun  fiber^.^ 

In the present study, the authors numerically computed the transverse 
temperature profile within the filament under a representative spinning con- 
dition for PP textile filament yarn. Taken advantage of in the computation 
was the very convenient equivalence between the steady-state heat conduc- 
tion within the melt spinning filament and the two-dimensional transient 
heat conduction within a stationary circular disk of fixed diameter. This 
equivalence introduced in an intuitive manner in the previous study2 was de- 
rived from the basic equation of energy in the present study. 

The nonaxisymmetry was introduced in the numerical computation by 
using the Eckert4 data on the Nusselt number variation along the periphery 
of stationary cylinder cooled by a crossflow of air. 
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Finally, in an attempt to indirectly check the validity of the computed tem- 
perature profile, variations of dyeability over the PP filament cross sections 
were observed under the microscope. 

DERIVATION OF GOVERNING EQUATIONS 

Assuming (i) steady-state spinning, (ii) contant polymer density p, (iii) axi- 
symmetrical and purely extensional flow of polymer, (iv) negligible viscous 
heat dissipation, and (v) negligible heat conduction in the axial direction, we 
may write the equations of continuity5 and energy6 in cylindrical coordinates 
for the melt spinning system shown in Figure 1 as 

l a  au 
-- (ru,) + - = 0 
r ar ax 

p C , ( ~ , - + ~ E )  at = k ( L d ( r $ ) + - - ]  1 a2t 
ar ax r ar r2 ad2 

where t is temperature, u is velocity in the x direction, C, is specific heat, and 
k is heat conductivity of polymer. 

A t  this point, we further assume that the theoretically computed filament 
radius profile R ( x )  is unaffected by the existance of, the radial temperature 
gradient. That is to say, we may separately compute R ( x )  by solving the 
equations of continuity, momentum, and energy under the assumption of a 
flat temperature profile across the filament as was done by the authors7 pre- 
viously and, in the present analysis, use the separately computed R ( x )  as 
given. This eliminates the need of the equation of momentum. 

Under purely extensional flow conditions, u is independent of r ,  and eq. (1) 
becomes 

r du 
2 dx 

u , = - - -  (3) 

showing that u, is directly proportional to radial coordinate r .  The stream- 
line shown in Figure 1 is expressed by the equation 

dr u, r du 
dx u 2u dx’ 
- - -= - - -  - (4) 

Equation (4) is readily integrated to give 

w 2 u  = const. = volume flow rate within radius r .  (5) 

When r above is equated to the filament radius R,  we further obtain 

?rR2u = const. = total volume flow rate. (6) 

In view of eqs. (5) and (6) the quantity 

remains constant along a given stream line (see Fig. 1). In other words, a 
streamline can be uniquely identified by the two parameters p and 8. 

Referring to Figure 1, let us consider an infinitely thin disk-like fluid ele- 
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Fig. 1. Schematic of melt spinning. 

ment which started to flow down the steady-state spinline a t  time T = 0. The 
location in the three-dimensional space of a point on this disk can be identi- 
fied by specifying a streamline and time 7,  or by giving the three parameters 
p ,  6, and r. In other words, the conception of the moving disk converts the 
independent variables in eq. (2) from ( x ,  r, 6) to ( T ,  p ,  6). x and r are related 
to 7 and p ,  respectively, by eq. (7) above and eq. (8) below: 

x dx so u(x)=T- 
Differentiation of temperature t with respect to r along the streamline 

keeping p constant yields 

(9) 

By substituting eq. (9) above into the left-hand side of eq. (2) and eq. (7) into 
the right-hand side of the same eq. (2), one obtains 

a t  a t  

1 a2t 

The right-hand side of eq. (10) is identical in form to that of eq. (2) since R is 
independent of r .  

As far as the (7, p ,  6) coordinates are concerned, the restriction p = const. 
on the left-hand side of eq. (10) may be removed provided the partial deriva- 
tives in eq. (10) and subsequent equations are always meant to be in the (7, p ,  
6) coordinates. 

Substitution of eq. (8) into the left-hand side of eq. (10) yields 

R2pCp a t  R2pCp a t  

k a r  k ax 
u -. _ -  - 

The a t l a x  in eq. (11) above is different from that in eq. (9) in that the restric- 
tion p = const. is implied. 

Noting that R2u is a constant, we further define a new variable 



370 MATSUO AND KASE 

ak x=--- 
pCpuR2 GC, 

X - k x  

where G is the mass throughput of the melt spinning. Using the new variable 
X ,  eq (10) now becomes 

a t  1 at a2t 1 a2t - +-+--. 
aX p ap ap2 p2 a P  

Equation (13) is the very equation of unsteady two-dimensional heat conduc- 
tion, with X being the fictitious time variable. The present problem can now 
be treated as that of a two-dimensional transient heat conduction within a 
stationary disk having a fixed radius of p = 1. 

BOUNDARY CONDITION 

The boundary condition a t  the filament surface is 

at  
ar 

k - = ( t * - t ) h  a t r = R  

where h is the coefficient of heat transfer on the filament surface. When r is 
replaced with p, eq. (14) becomes 

at Rh 
aP k 
_ -  - (t* - t )  - = (t* - ~ ) N U  

where Nu is the Nusselt number. 

pressed by the authors7 in their previous study by an experimental formula 
The average of h around the filament periphery denoted here as h was ex- 

where A is the cross-sectional area of the filament and uy is the speed of 
crosswise cooling air. 

R ( x )  is known, and uy is a given spinning condition. Therefore, h can 
readily be calculated as a function of X using eq. (16) above. 

Shown in Figure 2 is an example of the dependence of Nu = (Rh/k) upon 
X computed for the spinning condition I below. 

Spinning Condition I 
t* = 3OoC = const. 
uy = 30 cm sec-l = const. 
G = 0.741 X g sec-l 
C, = 0.7 cal g-l deg-l 
12 = 3.3 X lod4 cal cm-l sec-l deg-l 
d, = 0.6 mm 
t ,  = 260°C = spinneret temperature 
u, = 500 m min-l 

for PP 
for PP 

where d, is the maximum filament diameter in die swell and uw is the take 
up speed. It is noteworthy that (RhIk) stays practically constant over much 
of the spinline except in the vicinity of the spinneret. A ( x )  and t(x) curves 
computed in a previous study7 as a steady-state solution to the equations of 
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Fig. 2. Dependence of Nusselt number (Rhlk) on fictitious time variable X .  

Fig. 3. 

x (crn) 

Cross-sectional area profile A ( x )  computed in a previous study.' 

x (cm) 

Fig. 4. Average temperature profile t ( x )  computed in a previous s t ~ d y . ~  

continuity, momentum, and energy assuming a flat temperature profile 
across the filament and under spinning condition I above are shown in Fig- 
ures 3 and 4, respectively. These A ( x )  and t(x) values were used in the 
above computation of (Rhlk) .  
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Fig. 5. Nusselt number around a stationary cylinder cooled by cross flow of air as given by 
E ~ k e r t . ~  

- 90 180 
€3 

Fig. 6. Dependence of (h/h) on 8 used in the analysis. 

Nu = Rh/k, however, is known to vary along the periphery of a stationary 
cylinder cooled by a cross flow of air, as the Nu-versus-$ curves under differ- 
ent Reynolds number Re values given by Eckert4 show (See Fig. 5) .  Since 
the present melt spinning filament runs in the axial direction, it is not a sta- 
tionary cylinder as in Eckert’s experiments. However, it was simply assumed 
that the data shown in Figure 5 can adequately give the dependence of the 
ratio (hlh) on 0 in the present case. In the present analysis, eq. (16) was used 
to obtain h and the curves in Figure 5 to obtain (h/h). 

Considering that Re varies from about 10 to 100 along the spinline in con- 
ventional industrial melt spinning, the dependence of (hlh) on 8 as shown in 
Figure 6 was constructed out of the corresponding curves in Figure 5. The 
average of the ( h h )  curve over the filament periphery naturally is equal to 
unity. 
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Fig. 7. Partitioning of filament cross section into 81 fictitious stirred tanks. 

NUMERICAL COMPUTATION 

The problem now is to solve the two-dimensional heat conduction equa- 
tion, eq. (13), subject to the boundary condition, eq. (15). Direct expansion 
of eq. (13) into a partial difference equation gives rise to difficulty at  the cen- 
ter of the circular filament cross section. For this reason, a direct simulation 
of the problem, essentially similar in principle to the finite element method, 
was attempted in the present study. 

As shown in Figure 7, the left-hand side of the circular cross section having 
a unity radius was partitioned into 81 arbitrary segments. The physical in- 
terpretation of this partitioning is as follows: 

(i) Each of the 81 segments is considered a stirred tank filled with liquid of 
uniform temperature. 

(ii) The overall coefficient of heat transfer on the outmost periphery is 
made equal to 

(Rh/k)(h/h) = (Rh/k) (17) 
with the values of (Rh/k) and (hlh) given respectively in Figures 2 and 6 as 
functions of X and 6. 

(iii) Since chord TT’ in Figure 7 is the direction of cooling air flow, the 
walls along TT’ becomes a non-conducting barrier for the reason of symme- 
try. 

(iv) The overall coefficient of heat transfer on each wall between two adja- 
cent stirred tanks is made equal to 

klcenter distance between the centers of the two stirred tanks. 
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Fig. 8. Highest and lowest temperatures within the filament expressed in y and plotted 
against X. Numbers are the stirred tank numbers as shown in Fig. 7. 
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Fig. 9. Temperature contours for X = 2.0. 

The proof of the validity of this simulation is not available. Since, how- 
ever, the partitioning of the circle at constant radial and angular increments 
can be proved to be the correct differencing of eq. (13), the above simulation 
scheme, too, is likely to be valid. 

Under the above simulation scheme, the governing difference equation for 
the 60th stirred tank in Figure 7 is 

t*6o = t60 + Wl(t59 + t61 - 2t6O)Ax  

+ W2(t46 + t47 - 2 t 6 0 ) A X  

+ W3(t70 - t60 )AX (18) 

where t*60 is the temperature of the 60th stirred tank for the next time incre- 
ment. The governing equations for other stirred tanks are essentially similar 
to eq. (18) above, except for minor differences due to variations in geometri- 
cal configuration. AX is the difference increment in X, the dimensionless 
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Fig. 10. Temperature contours for X = 6.0. 
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Fig. 11. Dyed and undyed portions of filament cross sections in comparison to computed tem- 
perature contours in Fig. 10. 

distance from the spinneret. W1, Wa, and Ws are constants characterizing 
the geometry of the particular stirred tank. 

A computer program incorporating eq. (18) and equations for other stirred 
tanks and having 80 FORTRAN statements was developed. When ran on an 
IBM-360-40 machine, the computation for spinning condition I took about 3 
min under the AX value of 0.004. 

The numerical solution for spinning condition I is summarized in Figures 8 
through 10. Taking advantage of the fact that t * in this particular case is a 
constant, the temperature t ( p ,  8, X )  is expressed in a dimensionless form 

t - t* 
y== 

where t ,  is the spinneret temperature (26OOC). Figure 8 shows the y-versus- 
X curves for the 2nd and 63rd stirred tanks which exhibited, respectively, the 
lowest and highest temperatures among the 81 tanks. 

The temperature profiles shown in Figures 9 and 10 for dimensionless axial 
positions X = 2.0 and 6.0 are the primary results of the present study. 
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AN INDIRECT COMPARISON OF EXPERIMENT AND THE 

It  is practically impossible to measure the temperature within the melt 
spinning filament. For this reason, an indirect verification of the computed 
temperature profile was attempted. 

The PP filament yarn spun under spinning condition I was dyed under the 
following conditions: 

Dye: (i) Sumiplene Bril Blue, a product of Sumitomo Chemical Co., 1% by 
weight of fiber; (ii) Cellion Fast Red 4 G, 2% by weight of fiber 

Dispersing agent: Neugen EA-120,2% by weight of fiber 
Bath ratio: 150 
Temperature: 100°C 
Time: 1 hr 
Cross sections of the dyed filament yarn observed under the microscope are 

shown in Figure 11. On one of the cross sections, the computed temperature 
profile in Figure 10 was superposed. The border between the dyed and un- 
dyed portion coincides strikingly well with one of the computed temperature 
contours, suggesting indirectly the general validity of the computed values. 
This, however, is not a conclusive proof since the relation between the dye- 
ability and the temperature history in melt spinning is not established. 

COMPUTED TEMPERATURE PROFILE 

CONCLUSIONS 
An attempt was made to numerically compute the temperature profile 

within the melt spinning filament using the coefficient of heat transfer data 
developed by the authors7 previously and the dependence of Nu on angular 
coordinate 0 as given by Eckert.* Proved and used in the analysis was the 
analogy between the heat conduction within the steady-state spinline and the 
transient two-dimensional heat conduction within a disk of fixed radius. 

The computed temperature contours were approximately concentric, with 
the temperature center, or the maximum temperature point, shifted from the 
filament center in the direction of the cooling air flow. 

A filament yarn melt spun under conditions identical to that used in the 
theoretical computation was dyed and observed under the microscope for 
filament cross sections. The border between the dyed and undyed portion of 
the filament cross section approximately coincided with one of the computed 
temperature contours, suggesting the general validity of the computed con- 
tours although not proving it conclusively. 
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